A Video-Based Automated Recommender (VAR) System for Garments

نویسندگان

  • Shasha Lu
  • Li Xiao
  • Min Ding
چکیده

In this paper, we propose an automated and scalable garment recommender system using real time in-store videos that can improve the experiences of garment shoppers and increase product sales. The video-based automated recommender (VAR) system is based on observations that garment shoppers tend to try on garments and evaluate themselves in front of store mirrors. Combining state-of-the-art computer vision techniques with marketing models of consumer preferences, the system automatically identifies shoppers’ preferences based on their reactions and uses that information to make meaningful personalized recommendations. First, the system uses a camera to capture a shopper’s behavior in front of the mirror to make inferences about her preferences based on her facial expressions and the part of the garment she is examining at each time point. Second, the system identifies shoppers with preferences similar to the focal customer from a database of shoppers whose preferences, purchasing and/or consideration decisions are known. Finally, recommendations are made to the focal customer based on the preferences, purchasing and/or consideration decisions of these like-minded shoppers. Each of the three steps can be implemented with several variations, and a retailing chain can choose the specific configuration that best serves its purpose. In this paper, we present an empirical test that compares one specific type of VAR system implementation against two alternative, non-automated personal recommender systems: self-explicated conjoint (SEC) and self-evaluation after try-on (SET). The results show that VAR consistently outperforms SEC and SET. A second empirical study demonstrates the feasibility of VAR in real time applications. Participants in the second study enjoyed the VAR experience, and almost all of them tried on the recommended garments. VAR should prove to be a valuable tool for both garment retailers and shoppers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis

Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...

متن کامل

An Effective Algorithm in a Recommender System Based on a Combination of Imperialist Competitive and Firey Algorithms

With the rapid expansion of the information on the Internet, recommender systems play an important role in terms of trade and research. Recommender systems try to guess the user's way of thinking, using the in-formation of user's behavior or similar users and their views, to discover and then propose a product which is the most appropriate and closest product of user's interest. In the past dec...

متن کامل

Designing a trust-based recommender system in Social Rating Networks

One of the most common styles of business today is electronic business, since it is considered as a principal mean for financial transactions among advanced countries. In view of the fact that due to the evolution of human knowledge and the increase of expectations following that, traditional marketing in electronic business cannot meet current generation’s needs, in order to survive, organizat...

متن کامل

A New WordNet Enriched Content-Collaborative Recommender System

The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommen...

متن کامل

An ontological hybrid recommender system for dealing with cold start problem

Recommender Systems ( ) are expected to suggest the accurate goods to the consumers. Cold start is the most important challenge for RSs. Recent hybrid s combine  and . We introduce an ontological hybrid RS where the ontology has been employed in its  part while improving the ontology structure by its  part. In this paper, a new hybrid approach is proposed based on the combination of demog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Marketing Science

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2016